Vì số đư của phép chia F(x) cho nhị thức g(x)=x-1 chính bằng F(1) (theo định lý bezout) ,nên số dư của phép chia là
F(1)= 1+2-3-4+5+6-....-2012
=-2012
Vậy số dư của phép chia f(x) cho nhị thức g(x)=x-1 là -2012
Vì số đư của phép chia F(x) cho nhị thức g(x)=x-1 chính bằng F(1) (theo định lý bezout) ,nên số dư của phép chia là
F(1)= 1+2-3-4+5+6-....-2012
=-2012
Vậy số dư của phép chia f(x) cho nhị thức g(x)=x-1 là -2012
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+x^{2016}+1\) chia cho đa thức \(g\left(x\right)=x+1\)
Cho đa thức: f(x)= x^4-x^3-x^2+ax+b thỏa mãn khi chia f(x) lần lượt cho các đa thức x+1 và x-3 thì có dư tương ứng là -15 và 45. Hãy xác định các hệ số a, b và tìm tất cả các nghiệm của đa thức f(x)
a) Cho đa thức f(x) = x4 – 3x3 + bx2 + ax + b ; g(x) = x2 – 1
Tìm các hệ số của a, b để f(x) chia hết cho g(x)
b) Tìm giá trị nhỏ nhất của biểu thức A = x.(2x – 3)
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+2017x^2+2017x+1\) cho đa thức \(g\left(x\right)=x-1\) là
Khi chia đa thức cho đa thức ta được số dư là
Đa thức f (x) nếu chia cho x - 2, số dư bằng 3; nếu chia cho x-3 thì số dư là 4. Tìm phần số dư của đa thức f (x) khi chia cho (x-2) (x-3)
Cho đa thức f(x)=x^3-3x^2+2. Tìm đa thức thương và đa thức dư trong phép chia đa thức f(x) cho 2x+1
Biết đa thức f(x) chia cho x-3 dư 7, chia cho x-2 dư 5. Tìm đa thức dư trong phép chia đa thức f(x) cho x^2-5x+6
Đa thức f(x) chia cho x+1 dư 4, f(x) chia cho x2+1 dư 2x+3. Tìm phần dư khi chia f(x) cho (x+1)(x2+1)