1, \(B=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\frac{x+\sqrt{x}}{x-4}\)
\(P=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{x-4}{x+\sqrt{x}}\)
\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}{x\left(\sqrt{x}+1\right)}\)
2, B=|B|\(\Rightarrow\frac{x+\sqrt{x}}{x-4}\ge0\)
* Với x-4>0\(\Rightarrow x>4\)
\(\Rightarrow x+\sqrt{x}\ge0\)
\(\Rightarrow x>0\) \(\Rightarrow x>4\)
*Với x-4<0=> x<4
\(\Rightarrow x+\sqrt{x}\le0\)
\(\Rightarrow-1\le x\le0\left(KTM\right)\)
Vậy x>4.
3,\(P.x=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+1\right)}\)\(\le10\sqrt{x}-29-\sqrt{x-25}\)
\(\Rightarrow\left(x-4\right)\left(\sqrt{x}+2\right)\le\left(\sqrt{x}+1\right)\left(10\sqrt{x}-29-\sqrt{x-25}\right)\)
Đến đây tự giải.