Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Châu Mỹ Linh

Cho hai biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}\)\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}\) với \(x\ge0,x\ne25\)

a) Tính giá trị biểu thức A khi x = 9

b) Chứng minh rằng \(B=\frac{1}{\sqrt{x}-5}\)

c) Tìm các giá trị của x để A = B . \(\left|x-4\right|\)

Nguyễn Thanh Hằng
4 tháng 8 2020 lúc 22:32

a/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

Thay \(x=9\) vào biểu thức ta có :

\(A=\frac{\sqrt{9}+2}{\sqrt{9}-5}=\frac{3+2}{3-5}=-\frac{5}{2}\)

Vậy....

b/ Ta có :

\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}\)

\(=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{3\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{1}{\sqrt{x}-5}\)

Vậy...

c/ Ta có :

\(A=B.\left|x-4\right|\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}\left|x-4\right|\)

\(\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=x-4\\\sqrt{x}+2=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\\\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy...


Các câu hỏi tương tự
Trần Văn Tú
Xem chi tiết
Wind
Xem chi tiết
Wind
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Triệu Tử Phong
Xem chi tiết
Đặng Minh Anh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
NGuyễn Văn Tuấn
Xem chi tiết
Đỗ Thị Minh Anh
Xem chi tiết