a/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)
Thay \(x=9\) vào biểu thức ta có :
\(A=\frac{\sqrt{9}+2}{\sqrt{9}-5}=\frac{3+2}{3-5}=-\frac{5}{2}\)
Vậy....
b/ Ta có :
\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}\)
\(=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{3\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{1}{\sqrt{x}-5}\)
Vậy...
c/ Ta có :
\(A=B.\left|x-4\right|\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}\left|x-4\right|\)
\(\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=x-4\\\sqrt{x}+2=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\\\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
Vậy...