Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Nhàn Đào Thị

cho góc nhọn xOy và N là 1 điểm thuộc tia phân giác của góc xOy. Kẻ NA vuông góc với Ox ( a thuộc Ox), NB vuông góc với Oy( B thuộc Oy)
a. C/m: NA=NB
b. Tam giác OAB là tam giác gì? Vì sao?
c. Đường thẵng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E. C/m: ND=Ne
d. C/m: OK⊥DE
Mọi người làm ơn giúp mk đi, mk cảm ơn trước nha :) !

Akai Haruma
12 tháng 2 2018 lúc 15:38

Lời giải:

Bạn tự vẽ hình nhé.

a)

Vì $N$ nằm trên tia phân giác góc \(\widehat{xOy}\Rightarrow \widehat{AON}=\widehat{BON}\). Lại có: \(\widehat{OAN}=\widehat{OBN}=90^0\)

\(\Rightarrow 180^0-\widehat{AON}-\widehat{OAN}=180^0-\widehat{BON}-\widehat{OBN}\)

hay \(\widehat{ANO}=\widehat{BNO}\)

Xét tam giác $ANO$ và $BNO$ có:

\(\left\{\begin{matrix} \text{ON chung}\\ \widehat{AON}=\widehat{BON}\\ \widehat{ANO}=\widehat{BNO}\end{matrix}\right.\) \(\Rightarrow \triangle ANO=\triangle BNO(g.c.g)\)

\(\Rightarrow NA=NB\)

b) Vì \( \triangle ANO=\triangle BNO(g.c.g)\Rightarrow OA=OB\Rightarrow \triangle OAB\) cân tại $O$

c) Xét tam giác $AND$ và $BNE$ có:

\(\left\{\begin{matrix} \widehat{NAD}=\widehat{NBE}=90^0\\ AN=BN(cmt)\\ \widehat{AND}=\widehat{BNE}\text{ (hai góc đối đỉnh)}\end{matrix}\right.\)

\(\Rightarrow \triangle AND=\triangle BNE(g.c.g)\)

\(\Rightarrow ND=NE\)

d)

Xét tam giác $ODE$ có \(\left\{\begin{matrix} BD\perp OE\\ EA\perp OD\end{matrix}\right.\) mà \(BD\cap EA\equiv N\Rightarrow N\) là trực tâm tam giác $ODE$

\(\Rightarrow ON\perp DE\) hay \(OK\perp DE\) (đpcm)


Các câu hỏi tương tự
Clear YT_VN
Xem chi tiết
Trang Mai
Xem chi tiết
Nguyễn THL
Xem chi tiết
nguyễn lê bảo trâm
Xem chi tiết
Hạ Quỳnh
Xem chi tiết
Nguyễn Ngọc Vy :3
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết
Trần Đức Dương
Xem chi tiết
Đỗ Thạch Ngọc Anh
Xem chi tiết