Lời giải:
Xét tam giác $ABC$ vuông tại $A$ có $\widehat{B}=a$
Ta có: $\frac{AB}{BC}=\cos B=\cos a=\frac{5}{13}$
$\Rightarrow BC=\frac{13}{5}AB$
Áp dụng định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{(\frac{13}{5}AB)^2-AB^2}=\frac{12}{5}AB$
$\sin a=\frac{AC}{BC}=\frac{\frac{12}{5}AB}{\frac{13}{5}AB}=\frac{12}{13}$
$\tan a=\frac{AC}{AB}=\frac{\frac{12}{5}AB}{AB}=\frac{12}{5}$
$\cot a =\frac{AB}{AC}=\frac{1}{\tan a}=\frac{5}{12}$