Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc

Cho G là trọng tâm của tam giác ABC. Qua G vẽ đường thẳng song song với AB cắt BC tại D. Chứng minh rằng BD=\(\dfrac{1}{3}\)BC.

Nguyễn Lê Phước Thịnh
20 tháng 1 2021 lúc 22:41

Gọi E là trung điểm của AB

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(Gt)

Do đó: G∈CE(Tính chất ba đường trung tuyến của tam giác)

⇒GD//BE

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(gt)

Do đó: \(CG=\dfrac{2}{3}CE\)(Tính chất ba đường trung tuyến của tam giác)(1)

Ta có: CG+GE=CE(G nằm giữa C và E)

⇔GE=CE-EG

hay \(GE=\dfrac{1}{3}CE\)(2)

Từ (1) và (2) suy ra \(\dfrac{CG}{GE}=\dfrac{2}{1}\)

Xét ΔCEB có 

G∈CE(cmt)

D∈BC(gt)

GD//EB(cmt)

Do đó: \(\dfrac{GC}{EG}=\dfrac{DC}{BD}\)(Định lí Ta lét)

\(\dfrac{DC}{BD}=2\)

hay DC=2BD

Ta có: BD+DC=BC(D nằm giữa B và C)

⇔2BD+BD=BC

⇔3BD=BC

hay \(BD=\dfrac{1}{3}BC\)(đpcm)

Thanh Hoàng Thanh
20 tháng 1 2021 lúc 22:36

Từ điểm C kẻ đường trung tuyến CE của tam giác ABC

Ta có GD sog sog AB (gt).

 Suy ra : GD sog sog BE ( E thuộc AB)

Xét Tam giác ABC: G là trọng tâm (gt)

 Suy ra: GE/CE = 1/3 (Tc trọng tâm trong tgiác)

Xét tam giác BCE có: GD sog sog BE (cmt)

 Suy ra: BD/BC = GE/CE   (định lý Talet)

mà:  GE/CE = 1/3 (cmt)

 Suy ra: BD = 1/3 BC      (đpcm)

 


Các câu hỏi tương tự
Trần Bắc Huyền
Xem chi tiết
Phương Hà
Xem chi tiết
Ngọc
Xem chi tiết
huong
Xem chi tiết
Minz Ank
Xem chi tiết
Hàn Lãnh Băng
Xem chi tiết
Kamato Heiji
Xem chi tiết
Mai Thanh Tân
Xem chi tiết
Best zanis
Xem chi tiết