Cho các số dương x;y;z thoả mãn:xyz=\(\frac{1}{2}\)Chứng minh rằng:
\(\frac{yz}{x^2\left(y+x\right)}+\frac{xz}{y^2\left(x+z\right)}+\frac{xy}{z^2\left(x+y\right)}\ge xy+yz+xz\)
Cho các số dương x,y,zz thỏa mãn điều kiện xy+yz+xz=670. Chứng minh rằng
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-zx+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xz+xy}\ge\frac{x^2+y^2+z^2}{xy+yz+xz}\)
1. Cho a,b,c > 0. Cmr: a) \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)
b) \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
2. Cho \(x,y,z>0;x+\frac{y}{3}+\frac{z}{5}\ge3;\frac{y}{3}+\frac{z}{5}\ge2;\frac{z}{5}\ge1.MaxP=x^2+y^2+z^2\)
3. Cho \(x>0;y\ge2;2x+y+xy\ge6.MinP=x^3+y^2\)
4. Cho \(0< \alpha< \beta< \gamma\). Giả sử x,y,z > 0 TM \(z\ge\gamma;\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}+\frac{xyz}{\alpha\beta\gamma}=4;\frac{y}{\beta}+\frac{z}{\gamma}+\frac{yz}{\beta\gamma}=3.MinP=x^3+y^3+z^3\)
Cho x,y,z là 3 số dương.Chứng minh rằng
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
Cho a,b,c >0 Chứng minh a, \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\)
b, \(\frac{a^3+abc}{b^3+c^3+abc}+\frac{b^3+abc}{c^3+a^3+abc}+\frac{c^3+abc}{a^3+b^3+abc}\ge2\)
Cho x,y,z >0 và \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=3\) Tính GTNN của M = \(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
Cho các số dương x,y,z thỏa mãn: xy + yz + zx = 3xyz. Chứng minh rằng
\(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x, y, z là các số thực dương thỏa mãn \(xy+yz+xz=1\) . Chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)