1,cho\(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)
CMR:\(\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
cho a,b,c,x,y,z thỏa mãn
\(\frac{x}{a+2b+c}=\frac{b}{2a+b-c}=\frac{z}{4a-4b+c}\)
CM:\(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Cho \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
Chứng minh : \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
1.
a. Cho \(\dfrac{a}{2b+c}=\dfrac{b}{2c+a}=\dfrac{c}{2a+b}\left(a,b,c>0\right)\). Tính giá trị mỗi tỉ số
b. Tim x,y,z biết: \(\dfrac{2x-y}{5}=\dfrac{3y-2z}{15}\)và x + z = 2y
CMR
Nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y=z}\)
(với điều kiện các tỉ số đều có nghĩa )
cho \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)c/m rang \(\frac{a}{b}=\frac{c}{d}\)
--\(Cho\frac{a}{b}=\frac{3}{4}.TínhA=\frac{a^2+3b^2}{a^2-3b^2}\)
--Cho\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
CMR \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Please HELP meeeeeee🙏 🙏 🙏 🙏
cho\(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a, \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)
b, \(\frac{2a^2-3ab+4b^2}{2b^2+5ab}=\frac{2c^2-3cd+4d^2}{2d^2+5cd}\)
Bài 1.
a) TÍnh giá trị của biểu thức:
A=\(\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-210d}{a+b}+\frac{2011d-2010c}{b+c}\), biết:
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)(a,b,c,d >0)
b) Cho: \(\frac{x}{3}=\frac{y}{4}\) và \(\frac{y}{5}=\frac{z}{6}\)
Tính giá trị biểu thức:
M=\(\frac{2x+3y+4z}{3x+4y+5z}\)