Cho đương tròn tâm (O), đườn kính AB cố định, một điểm I nằm giữa A và O sao cho OI< AI. Kẻ dây MN⊥⊥AB tại I, gọi C là tiếp điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N, B. Gọi E là giao điểm của AC và MN
a) CMR: tứ giác IEBC nội tiếp
b)CMR: AM2AM2=AE.AC
c)CMR: AE. AC- AI. BI= AI2AI2. CM: M, B và tâm đường tròn ngoại tiếp tam giác MCE thẳng hàng
d)Với I cố định, xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác MCE nhỏ nhất
1. Theo giả thiết MN ⊥AB tại I => ∠EIB = 900; ∠ACB nội tiếp chắn nửa đường tròn nên ∠ACB = 900 hay ∠ECB = 900
=> ∠EIB + ∠ECB = 1800 mà đây là hai góc đối của tứ giác IECB nên tứ giác IECB là tứ giác nội tiếp .
2. Theo giả thiết MN ⊥AB => A là trung điểm của cung MN => ∠AMN = ∠ACM ( hai góc nội tiếp chắn hai cung bằng nhau) hay ∠AME = ∠ACM. Lại thấy ∠CAM là góc chung của hai tam giác AME và AMC do đó tam giác AME đồng dạng với tam giác ACM.
3. Theo trên ΔAME ~ ΔACM => => AM2 = AE.AC
4. ∠AMB = 900 (nội tiếp chắn nửa đường tròn ); MN ⊥AB tại I => ΔAMB vuông tại M có MI là đường cao => MI2 = AI.BI ( hệ thức giữa cạnh và đường cao trong tam giác vuông) .
Áp dụng định lí Pitago trong tam giác AIM vuông tại I ta có AI2 = AM2 – MI2 => AI2 = AE.AC - AI.BI .
5. Theo trên ∠AMN = ∠ACM => AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM; Nối MB ta có ∠AMB = 900 , do đó tâm O1 của đường tròn ngoại tiếp ΔECM phải nằm trên BM. Ta thấy NO1 nhỏ nhất khi NO1 là khoảng cách từ N đến BM => NO1 ⊥BM.
Gọi O1 là chân đường vuông góc kẻ từ N đến BM ta được O1 là tâm đường tròn ngoại tiếp ΔECM có bán kính là O1M. Do đó để khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất thì C phải là giao điểm của đường tròn tâm O1 bán kính O1M với đường tròn (O) trong đó O1 là hình chiếu vuông góc của N trên BM.
Lưu ý kí hiệu:∠ có nghĩa là góc.