Cho 2 đường tròn đồng tâm O bán kính là 5 và 3. Vẽ đường tròn O' tiếp xúc 2 đường tròn trên tại M và N
a/ C/m 4 điểm M,N,O,O' thẳng hàng
b/ Tính bán kính đường tròn O'
Cho tam giác ABC, AB=8,AB=15. Đường cao AH. D đối xứng với B qua H. Đường tròn đường kính CD cắt AC tại E
a) HE là tiếp tuyến của đường tròn
b) tính HE
Cho 2 đường tròn (O;R) và (O'R') nằm ngoài nhau. Một đường thẳng d tiếp xúc trong với cả 2 đường tròn tại A,B. Một đường thẳng d' ≠ d tiếp xúc trong với cả 2 đường tròn tại C,D.
Cm: a) AB=CD.
b) Các đường thẳng AB,CD cắt nhau trên đường thẳng OO'
BÀI 1 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Đường nối tâm OO' cắt (O) ở B, cắt (O') ở C. DE là một tiếp tuyến chung ngoài của hai đường tròn (D thuộc (O), E thuộc (O')). Gọi M là giao điểm của BD và CE. Chứng minh :
a) góc MDE vuông
b) MA là tiếp tuyến chung của (O) và (O')
c) MD . MB = ME . MC
BÀI 2 : Cho (O;R) và ( I ; r) tiếp xúc ngoài tại A . Vẽ tiếp tuyến chung ngoài BC ( BC thuộc (O) ; C thuộc (I) ). Tiếp tuyến tại A có hai đường tròn cắt BC ở M. Chứng minh:
a) M là trung điểm BC
b) tam giác ABC và tam giác DMI vuông
c) Tính BC theo R và r
BÀI 3 : Cho (O:R) và (O`; r) tiếp xúc ngoài tại A . Gọi BC , DE là các tiếp tuyến chung ngoài của 2 đường tròn ( B,D thuộc (O) . Chứng minh :
a) BDEC là hình thang cân
b) Tính diện tích BDEC theo R và r
BÀI 4 : Cho nửa đường tròn tâm O , đường kính AB. VẼ (O`) đường kính OA . Qua A vẽ dây AC của (O) cắt (O`) ở M . Chứng kinh :
a) (O) và (O`) tiếp xúc nhau
b) O`M // OC
c) M là trung điểm của AC và OM // BC
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
Cho hai đường tròn (O,R) và (O',R') (R>R') tiếp xúc ngoài tại A. Qua A kẻ đường thẳng m cắt (O) tại C, và d2 là tiếp tuyến của (O') tại D.
a. Chứng mính d1//d2
b. Trên cùng một nửa mặt phẳng bờ OO' không chứa C, vẽ hai bán kính OE và OF sao cho OE//OF(F khác D). Tính góc EAF
c. Đường thẳng OO' cắt đường thẳng EF tại H. Tính OH theo R và R'
d. Vẽ đường kính FI của (O'). Chứng minh CE//ID
Cho (O;R) và (O1;R1) cắt nhau tại A và B, CAD là cát tuyến di động quanh A(C thuộc O), (D thuộc O1). H và K là hình chiếu của O, O1 trên CD, M là trung điểm của OO1.
a)C/m MH=MK
b Trung trực CD đi qua 1 điểm
c)Timg tập hợp trung điểm I của HK
d) Dựng cát tuyến CD để A là trung điểm của CD
e)Tìm GTLN của CD
f) ẽ hình bình hành O1BOE. C/m O1,A,O,E cùng thuộc 1 đường tròn