Cho đường tròn (O:R) hai đường kính AB và MN .Đường thẳng BM và BN cắt tiếp tuyến kẻ từ A của đường tròn lần lượt tại E,F .Gọi P,Q theo thứ tự là trung điểm cuả EA,FA
1) Chứm minh tứ giác MNFE nội tiếp
2) Kẻ pi vuông góc với BQ ,PI cát OA tại H .CChứng minh AH.AB =AQ.AP và H là trung điểm của OA
3) Tính giá trị nhỏ nhất của diện tích tam giác BPQ theo R
cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O).Kẻ tiếp tuyến AB đường kính BC.Trên đoạn OC lấy điểm D .đường thảng AD cắt (O) tại E,F (E nằm giữa A và F).Gọi I là trung điểm của EF
a) ABOI nt
b) đường thẳng F song song với AO cắt BC tại K.Chứng minh B,I,K,F cx thuộc 1
đường tròn
Mong nhận được sự trợ giúp của các cao nhân !!!
cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O).Kẻ tiếp tuyến AB đường kính BC.Trên đoạn OC lấy điểm D .đường thảng AD cắt (O) tại E,F (E nằm giữa A và F).Gọi I là trung điểm của EF
a) ABOI nt
b) đường thẳng F song song với AO cắt BC tại K.Chứng minh B,I,K,F cx thuộc 1đường tròn
c) ke tiep tuyen thu hai AM voi (O), N la giao diem cua CE vs AO. Chinh minh: ANEM noi tiep
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho hai đường tròn (O) và (O') ở ngoài nhau. Đường nối tâm O' cắt các đường tròn (O) và (O') lần lượt tại các điểm A, B, C, D theo thứ tự trên đường thẳng. Kẻ tiếp tuyến chung ngoài EF, E ϵ (O), F ϵ (O'). M là giao điểm của AE và DF, N là giao điểm của EB và EC. Chứng minh:
a) MENF là hình chữ nhật
b) MN vuông góc AD
c) ME.MA=MF.MD
cho (O;R) từ điểm A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB và AC (B,C là tiếp điểm)
từ điểm m thuộc cung nhỏ BC kẻ tiếp tuyến thứ 3 với đường tròn tiếp tuyến này cắt AB,AC lần lượt tại D và E. OD và OE lần lượt cắt BC tại I và K chưng minh OM,DE và IK đồng quy
Cho đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kỳ (E ≠ A; B). Tiếp tuyến tại E của đường tròn (O) cắt Ax và By lần lượt tại C và D.
a. Chứng minh: CD=AC+BD
b. Vẽ EF ⊥ AB tại F, BE cắt AC tại K. Chứng minh: AF.AB=KE.EB
c. EF cắt CB tại I. Chứng minh ΔAFC đồng dạng với ΔBFD suy ra FE là tia phân giác của góc CFD
d. EA cắt CF tại M, EB cắt DF tại N. Chứng minh M, I, N thẳng hàng.
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MHAB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nh
Cho (O;R) và 1 đường thẳng d cố định cắt (O) tại 2 điểm C, D. Một điểm M di động trên d sao cho MC>MD và ở ngoài (O). Qua M kẻ tiếp tuyến MA,MB với đường tròn. Gọi H là trung điểm của CD, gọi giao của AB với MO, CH lần lượt là E và F. Chứng minh:
a) \(CE.OM=R^2\)
b) Tứ giác MEHF nội tiếp
c) Đường thẳng AB đi qua 1 điểm cố định