a: Xét (O) có
CA,CB là các tiếp tuyến
nên CA=CB
mà OA=OB
nên OC là đường trung trực của AB
=>OC vuông góc với AB(1)
b: Xét (O) có
ΔABD nội tiếp
AD là đườg kính
Do đó: ΔABD vuông tại B
=>AB vuông góc với BD(2)
Từ (1) và (2) suy ra OC//BD
a: Xét (O) có
CA,CB là các tiếp tuyến
nên CA=CB
mà OA=OB
nên OC là đường trung trực của AB
=>OC vuông góc với AB(1)
b: Xét (O) có
ΔABD nội tiếp
AD là đườg kính
Do đó: ΔABD vuông tại B
=>AB vuông góc với BD(2)
Từ (1) và (2) suy ra OC//BD
Cho đường tròn(O;R) dây AB=r√3 qua O kẻ đường vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) tại điểm M a/Chứng minh tam giác OMB là tam giác vuông và từ đó suy ra MB là tiếp tuyến b/Vẽ đường kính BC của đường tròn(O).chứng minh AC vuông góc AB c/Tính diện tích tứ giác MAOB theo R
Từ điểm A nằm ngoài (O, R) về tiếp tuyến AB, dây cung BC vuông góc ĐA tại H. a) Chứng minh AC là tiếp tuyển (O). b) Vẽ đường kinh BD của (O), AD cắt (O) tại K. Chứng minh AH IAO = AKA . Câu 8: Cho đường tròn (O; R) , đường kính AB Vẽ dây AC sao cho CAB = 30 deg Trên tia đối của tia BA lấy điểm M sao cho BM = R Chúng mình rằng: c) MC là tiếp tuyến của (O). d) M * C ^ 2 = 3R ^ 2 mọi người ơi giúp em với em cần gấp ạ
Cho nửa đường tròn (O; R) đường kính AB. Kẻ Ax và By là hai tiếp tuyến của nửa đường tròn tại A và B. Trên Ax lấy điểm C bất kì, đường thẳng qua O và vuông góc với OC cắt By tại D. a) Chứng minh AC. BD = R2 . b) Chứng minh tam giác COD đồng dạng với tam giác ODB. c) Chứng minh CD là tiếp tuyến của (O). e) Tìm vị trí của điểm C trên Ax để tứ giác ACDB có chu vi nhỏ nhất.
: Cho đường tròn (O; R) có đường kính AC và dây cung BC = R. a) Tính số đo của  và độ dài dây AB theo R. b) Đường thẳng qua O và vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) ở D. Chứng minh DB là tiếp tuyến của đường tròn (O). c) Vẽ dây BE ⊥ AC tại M . Chứng minh tứ giác OBCE là hình thoi và tính diện tích tứ giác OBCE theo R. d)Tiếp tuyến tại C của (O) cắt DB tại K . Chứng minh AK, CD, BE đồng quy. MK CHỈ CẦN CÂU C THÔI Ạ
Cho đường tròn tâm O đường kính BC. Từ điểm H trên đoạn OB (H khác O và B) vẽ dây cung AD vuông góc với OB.
a) Chứng minh tam giác ABC vuông và AD^2 = 4HB.HC
b) Các tiếp tuyến của (O) tại A và D cắt nhau tại M. Chứng minh 3 điểm M, B, O thẳng hàng và 4 điểm M, A, O, D cùng thuộc một đường tròn
c) Chứng minh B là tâm đường tròn nội tiếp tam giác MAD và BM.CH = CM.BH
d) Gọi I là chân đường vuông góc hạ từ A xuống đường kính DE, ME cắt tại AI tại K. Chứng minh KA = KI
Cho đường tròn (O;R), dây MN khác đường kính. Hai tiếp tuyến của đường tròn (O;R) tại M và N cắt nhau tại K. Kẻ đường kính NI, kẻ MH vuông góc với NI tại H. a) chứng minh OK vuông góc với ON b) chứng minh ON là phân giác góc HMK c) gọi Q là giao điểm của KI và MH. Chứng minh QH = QM
Cho đường tròn (O;R), đường kính AB. Trên đường (O) lấy điểm D sao cho AD>BD. Kẻ OH vuông góc với AD tại H, tia OH cắt tiếp tuyến Ax của đường tròn (O) tại C Gọi E là giao điểm của BC và đường tròn (O). Qua O kẻ đường thẳng vuông góc với OC, đường thẳng này cắt tia CA tại M, kẻ CN vuông góc với MB tại N. Gọi K là giao điểm củ CN và AB. Chứng minh KH vuông góc với CD
Cho nửa đường tròn O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đến AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M( C và D là các tiếp điểm khác H)
a) Chứng minh rằng ba điểm C, M, D thẳng hàng và CD là tiếp tuyến của đường tròn (O)
b) Chứng minh rằng khi điểm M di chuyển trên nửa đường tròn (O) thì tổng AC + BD không đổi
c) Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi