Cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). Kẻ DK vuông góc với EF tại K (K thuộc EF). Gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF.
a. Chứng minh tứ giác EMNF nội tiếp
b. Chứng minh DM.DE = DN.DF
c. Tìm vị trí của điểm D sao cho bán kính đường tròn ngoại tiếp tam giác EFM đạt giá trị lớn nhất.
cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). kẻ DK vuông góc với EF tại K(K thuộc EF). gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF
a.cm tứ giác EMNF nội tiếp
b.cm DM.DE=DN.DF
cho đường tròn (O) đường kính EF, D là điểm di chuyển trên đường tròn (O) (D khác E và F). kẻ DK vuông góc với EF tại K(K thuộc EF). gọi M là hình chiếu vuông góc của K lên DE. Gọi N là hình chiếu vuông góc của K lên DF
Nhờ vẽ hình
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho (O;R) và điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Kẻ đường kính AD của đường tròn (O;R), gọi K là hình chiếu vuông góc của B trên đường thẳng AD. Gọi I là trung điểm của đoạn thẳng BK. Chứng minh: ba điểm M, I, D thẳng hàng
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
Cho (O), từ điểm A nằm ngoài đường tròn kẻ tiếp tuyến AB, AC với đường tròn. I là điểm thuộc cung nhỏ BC, từ I kẻ ID, IE, IF vuông góc với AB, BC, AC; IB cắt DE tại M, IC cắt EF tại N
a) Chứng minh tứ giác BEID và tứ giác CEIF nội tiếp
b) Chứng minh tam giác IDE đồng dạng với tam giác IEF
c) Chứng minh IE vuông góc với MN
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF