Cho đường tròn (O) đường kính AB=2R , C là trung điểm của OA và dây MN vuông góc với AO tại C . Gọi K lầ điểm di động trên cung nhỏ MB và H là giao điểm của AK và MN
a. Chứng minh tứ giác BCHK nội tiếp b. Chứng minh tam giác MBN đều c. Tìm vị trí điểm K trên cung nhỏ MB sao cho KM+KN+KB đạt giá trị lớn nhất
a) Ta thấy \(\widehat{BKH}=90^o\), \(\widehat{ACH}=90^o\) nên tứ giác BCHK nội tiếp.
b) Tam giác MBN cân tại B có BC là đường cao nên BC cũng là đường trung tuyến. Mà BO = 2OC nên O là trọng tâm của tam giác. Mặt khác O cũng là tâm đường tròn ngoại tiếp nên tam giác MBN đều.
c) Áp dụng định lý Ptoleme cho tứ giác BKMN nội tiếp ta có:
KN . BM = KM . BN + KB . MN.
Mà BM = BN = MN nên KN = KM + KB.
Ta có: \(KM+KN+KB=2KN\le2.2R=4R\)
Dấu "=" xảy ra khi và chỉ khi KN là đường kính của (O). Khi đó K là điểm chính giữa của cung nhỏ BC.