Cho đường tròn (O;R), đường kính AB. Trên đường (O) lấy điểm D sao cho AD>BD. Kẻ OH vuông góc với AD tại H, tia OH cắt tiếp tuyến Ax của đường tròn (O) tại C Gọi E là giao điểm của BC và đường tròn (O). Qua O kẻ đường thẳng vuông góc với OC, đường thẳng này cắt tia CA tại M, kẻ CN vuông góc với MB tại N. Gọi K là giao điểm củ CN và AB. Chứng minh KH vuông góc với CD
Cho đường tròn tâm O đường kính AC Kẻ tiếp tuyến Ax với (O) trên tia Ax lấy điểm B .Từ B kẻ tiếp tuyến BD với (O) ( D là tiếp điểm) AD cắt BO tại H BC cắt (O) tại K
a, CM 4 điểm A,D,B,O cùng thuộc 1 đường tròn
b, CM BH.BO=ab^2 và BH.BO=BK.BC
c. Từ 0 vẽ đường thẳng song song với AD, cắt tia BA tại E. Từ B vẽ đường thẳng vuông góc với EC tại F, BF cắt AC tại M. Chứng minh MH vuông góc với BD. AD trả lời xem
Cho nửa đường tròn (O;R) đường kính AB. Vẽ 2 tiếp tuyến Ax, By với nửa đường tròn đó. Trên tia Ax lấy điểm M sáo cho AM>R. từ M kẻ tiếp tuyến MC với nửa đường tròn (O) (C là tiếp điểm). Tia MC cắt By tại D
a, CM: MD=MA+BD và tam giác OMD vuông
b, Cho AM=2R Tính BD và chu vi tứ giác ABDM
c, Tia AC cắt tia By tại K. Chứng minh OK vuông góc với BM
cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm ˆOABOAB^= ˆCHACHA^.
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Cho đường tròn (O) đường kính AB. Qua A, B lần lượt vẽ các tiếp tuyến d1 và d2 đến (O). Từ M bất kì trên (O) vẽ tiếp tuyến với đường tròn cắt d1 tại C, d2 tại D. Đg tròn đường kính CD cắt (O) tại E, F (E thuộc AM), Gọi I là g'd' của AD và BC
a) C/m: AB là tiếp tuyến của đường tròn đường kính CD
b) CHứng minh MI vuông góc với AB, 3 điểm E,I,F thẳng hàng
P/s: Mn giúp tớ phần c/m 3 điểm E,I,F thẳng hàng thôi nhé! Mình lm đc các ý trên rồi!
Cho nửa đường tròn tâm O đường kính AB. Từ A, B vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Từ M là điểm trên nửa đường tròn (O) (M không là điểm chính giữa cung AB) vẽ tiếp tuyến lần lượt cắt Ax, By tại điểm C, D. Tia BM cắt Ax tại P, tia AM cắt By tại Q. Chứng minh ba đường thẳng AB, CD, PQ đồng quy.