cho đường tròn o đương kính ab trên tia đối của tia ba lấy h kẻ qua h đường thẳng d vuông góc với ab lấy điểm c thuộc đường tròn sao cho ca>cb và c khác a c khác b tia ac cắt d tại s
1 cm bcsh là tứ giác nội tiếp
2 tiếp tuyến tại c của đg tròn o cắt d tại i. Đoạn thẳng ai cắt đường tròn o tại e cm ac.as=ae.ai
Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A , B ). Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F.
a. Chứng minh rằng FCDE là tứ giác nội tiếp đường tròn.
b. Chứng minh rằng DA.DE = DB.DC.
Trên đường tròn tâm O đường kính AB=2R , lấy điểm C sao cho sđ cung BC=60° . Hai tiếp tuyến với đường tròn vẽ từ B và C cắt nhau tại D .
a) Tính sđ góc BOC và sđ cung nhỏ AC .
b) chứng minh tứ giác OBDC nội tiếp .
c) Tia AC cắt tia BD tại E . Chứng minh D là trung điểm của BE .
d) Biết R=15cm . Tính diện tích hình quạt giới hạn bởi cung nhỏ AC( biết π=3,14)
Cho đường tròn tâm O có đường kính AB và C là một điểm thuộc đường tròn tâm O (C khác A,B). Lấy điểm D thuộc dây cung BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F. Chứng minh:
a) Tứ giác FCDE nội tiếp
b) Chứng minh DA.DE = DB.DC
Cho nửa đườmg tròn (O) đường kính AB = 2R, trên nửa đường tròn lấy điểm C
(AC < BC). Gọi M là trung điểm của BC, qua B kẻ tiếp tuyến Bx với đường tròn (O)
cắt tia OM tại D.
a) Chứng minh AC // OD.
b) Chứng minh DC là tiếp tuyến của đường tròn (O)
Cho đường tròn (O;R) và dây BC cố định không qua 0. Trên tia đối của tia BC lấy điểm A khác B. Tủ A kẻ các tiếp tuyến AM, AN với đường tròn (M, N là tiếp điểm). 1) Chứng minh bốn điểm A, M, O, N cũng thuộc một đường tròn. 2) MN cắt OA tại H. Chứng minh OAI MN và AH.AO = AB.AC.
Cho đường tròn tâm O, đường kính AB. Vẽ tia Ox vuông góc với AB tại O, nó cắt (O) tại M. Lấy điểm E thuộc đoạn thẳng OM (E không trùng với O và M). AE cắt (O) tại C, tia BC cắt Ox tại D
1) Chứng minh tứ giác OECB nội tiếp đường tròn
2) Chứng minh OA.OB = OD.OE
3) Kẻ tiếp tuyến với (O) tại C, nó cắt ED tại I. Chứng minh I là trung điểm của đoạn thẳng ED
cho đường tròn (O;R) coa đuòng kính AB cố định. trên tia đối của tia AB lấy điểm C sao cho AC=R. qua điểm C kẻ đường thẳng d vuông góc với CA. lấy điểm M bất kì trên đường tròn (O) không trùng với A và B. tia BM cắt đường thẳng d tại P, tia PA cắt đường tròn (O) tại điểm thứ 2 là Q:
a) cm tứ giác ACPM nội tiếp và tính tích BM.BP theo R.
b) cm CA là tia phân giác của góc MCQ.
c) gọi H là giao điểm của CM và AP, cm PQ.AH=PH.AQ
d) cm trọng tâm G của tam giác CMB thuộc 1 đường tròn cố định khi điểm M thay đổi trên đường tròn (O).
tam giác ABC vuông tại A, AB<AC. Đường tròn tâm O, đường kính AC cắt BC tại D. Tiếp tuyến BE (BE≠BA). BO cắt AE tại H. Tiếp tuyến tại C của (O) cắt AE tại F, AD cắt CE tại K.chứng minh B,K,F thẳng hàng