Cho đường thẳng xy và đường tròn (O) không giao nhau vẽ OH vuông góc với xy (H € xy ). Từ điểm A trên đường thẳng xy vẽ tiếp tuyến AB với đường tròn (B tiếp điểm). Vẽ các tuyến AMN sao cho AB và MN nằm trên hai nửa mặt phẳng bờ AO. Gọi D là trung điểm của MN. a) Chứng minh tứ giác ABOD nội tiếp b) Chứng minh AB²= AM.AN
a: ΔOMN cân tại O có OD là trung tuyến
nên OD vuông góc NA
góc ODA=góc OBA=90 độ
=>ODBA nội tiếp
b; Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM