Dễ dàng nhận thấy d luôn đi qua điểm cố định \(A\left(0;4\right)\) \(\Rightarrow OA\) cố định
Gọi giao điểm của d và trục Ox là C \(\Rightarrow C\left(\frac{-4}{m^2+1};0\right)\)
Gọi H là chân đường vuông góc hạ từ O xuống d
Áp dụng hệ thức lượng:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OC^2}\) mà \(OA\) cố định \(\Rightarrow OH_{max}\) khi \(OC_{max}\)
Mà \(OC=\frac{4}{m^2+1}\le4\Rightarrow OC_{max}=4\) khi \(m=0\)
Vậy \(m=0\) thì k/c từ gốc tọa độ tới d là lớn nhất