\(d\left(O;d\right)=\dfrac{\left|0\cdot\left(m-4\right)+0\cdot\left(m-3\right)-1\right|}{\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}}=\dfrac{1}{\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}}\)
Để d(O;d) lớn nhất thì \(\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}_{min}\)
\(A=\sqrt{m^2-8m+16+m^2-6m+9}\)
\(=\sqrt{2m^2-14m+25}\)
\(=\sqrt{2\left(m^2-7m+12,5\right)}\)
\(=\sqrt{2\left(m^2-7m+3.5^2+0.25\right)}\)
\(=\sqrt{2\left(m-3.5\right)^2+0.5}>=\sqrt{0.5}\)
Dấu = xảy ra khi m=3,5