PT giao Ox, Oy là:
\(y=0\Leftrightarrow x=\dfrac{2}{2m+1}\Leftrightarrow A\left(\dfrac{2}{2m+1};0\right)\Leftrightarrow OA=\dfrac{2}{\left|2m+1\right|}\\ x=0\Leftrightarrow y=-2\Leftrightarrow B\left(0;-2\right)\Leftrightarrow OB=2\)
\(a,\) Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=\sqrt{2}\)
Ap dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m+1\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{\left(2m+1\right)^2}{4}=\dfrac{1}{4}\Leftrightarrow4m^2+4m+1=1\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
\(b,S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow OB\cdot OA=1\\ \Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)