Với \(m=3\Rightarrow x=-1\Rightarrow\)khoảng cách từ O đến d bằng 1
Với \(m\ne3\)
\(\left(m-4\right)x+\left(m-3\right)y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(4x+3y+1\right)=0\)
\(\Rightarrow d\) luôn đi qua điểm cố định \(A\left(-1;1\right)\)
Gọi H là chân đường vuông góc kẻ từ O xuống d thì OA là đường xiên
\(\Rightarrow OH\le OA\Rightarrow OH_{max}=OA=\sqrt{2}\) khi \(H\equiv A\)
Khi đó \(d\perp OA\)
Gọi pt OA có dạng :
\(y=ax+b\) \(\Rightarrow\left\{{}\begin{matrix}0.a+b=0\\-a+b=1\end{matrix}\right.\) \(\Rightarrow y=-x\)
Phương trình d viết lại:
\(y=\frac{4-m}{m-3}x+\frac{1}{m-3}\)
Do \(d\perp OA\Rightarrow\left(\frac{4-m}{m-3}\right).\left(-1\right)=-1\)
\(\Rightarrow\frac{4-m}{m-3}=1\Rightarrow4-m=m-3\Rightarrow m=\frac{7}{2}\)