Gửi em
a) Xét ΔAIB và ΔAIC có:
\(BI = IC (gt)\)
\(\widehat {AIB} = \widehat{AIC}\) (AI là đường trung trực của BC)
\(AI
\) là cạnh chung
Vậy \(ΔAIB = ΔAIC (c.g.c)\)
b) Vì ΔAIB = ΔAIC (cmt)
=> \(\widehat{BAI} = \widehat{CAI}\) (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
\(\widehat{BAI} = \widehat{CAI} (cmt)\)
AI chung (gt)
\(\widehat{AHI} = \widehat{AKI} =90^o (gt)\)
Vậy ΔAHI = ΔAKI (g.c.g)
=> AH = AK (2 cạnh tương ứng)
Vậy ΔAHK là tam giác cân
c) Vì \(AH = AK (cmt)\)
=> ΔAHK cân tại A.
=> \(\widehat{AHK} = (180° - \widehat{A}) : 2 (1)\)
Lại có:
\(ΔAIB = ΔAIC (cmt)\)
=> AB = AC
=> ΔABC cân tại A
=> \(\widehat{ABC} = (180° - \widehat{A}) : 2 (2)\)
Từ (1) và (2)
=> \(\widehat{AHK} = \widehat{ABC}\)
Mà 2 góc đồng vị
=> HK // BC