Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Bài 1.
Cho tam giác ABC, điểm D thuộc cạnh BC ( D không trùng với B; C). Lấy M là trung
điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của
tia MC lấy điểm F sao cho MF = MC. Chứng minh rằng:
a) AE // BC;
b) Điểm A nằm giữa hai điểm D và E.
Bài 2
Cho Ot là tia phân giác của góc xOy ( xOy là góc nhọn) . Lấy điểm M
Ot, vẽ MA
Ox ,
MB Oy (A
Ox, B
Oy )
1/ Chứng minh: MA = MB . .
2/ Cho OA = 8 cm; OM =10 cm. Tính độ dài MA.
3/ Tia OM cắt AB tại I . Chứng minh : OM là đường trung trực của đoạn thẳng AB
Bài 3. Cho tam giác ABC vuông tại A, có 0B60 và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ
DE vuông góc với BC tại E.
1/ Chứng minh: ABD = EBD.
2/ Chứng minh: ABE là tam giác đều.
3/ Tính độ dài cạnh BC.
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A và có đường phân giác BD. Kẻ đường thẳng DH vuông
góc với BC tại điểm H. Trên tia đối của tia AB lấy điểm K sao cho AK = CH.
1. Chứng minh ba điểm H,D,K thẳng hàng và chứng minh BD vuông góc với KC.
2. (*) Chứng minh rằng 2(AD + AK) > CK.
Cho tam giác ABC vẽ điểm M là trung điểm BC trên tia đối của tia MA lấy điểm D sao cho MA=MD
a) CM tam giác ABM= tam giác DCM
b) CM AB//DC
c) kẻ BE vuông góc với AM CF vuông góc với DM CM M là trung điểm của đoạn thẳng Ef
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC