Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho góc COD=90 độ(Olaf trung điểm của AB).CMR:
a) CD=AC+BD
b) CD là tiếp tuyến của đường tròn đường kính AB
c) AC.BD=ABmũ 2/4
giúp mình câu b
Cho nửa đường tròn (O;R) đường kính AB, hai tiếp tuyến Ax, By trên cùng một nửa mặt phẳng bờ AB. Trên tia Ax lấy điểm C, qua O kẻ đường thẳng vuông góc với OC cắt By ở D
1, C/m: CD là tiếp tuyến của (O)
2, C/m: CD = CA + BD
3, C/m: CA.BD = R2
Cho đoạn thẳng AB. Trên cùng nửa mặt phẳng bờ AB kẻ 2 tia Ax, By vuông góc với AB. Trên tia Ax và By lấy lần lượt 2 đỉểm C và D sao cho \(\widehat{COD}=90^o\) (O là trung điểm của AB). Chứng minh:
a, CD = AC + BD
b, CD là tiếp tuyến của đường tròn có đường kính AB
c, \(AC\cdot BD=\dfrac{AB^2}{4}\)
cho nửa đường tròn tâm o đường kính ab. vẽ 2 tiếp tuyến ax và by ở cùng nửa mặt phẳng chứa nửa quãng đường tròn. tiếp tuyến tại m của đường tròn cắt ax và by lần lượt ở d,c. a) Chứng minh AC+BD=CD. b) Chứng minh COD=90°. c) Chứng minh AC×BD=R²
Cho đường tròn tâm O bán kính R đường kính AB. Trên cùng 1 nửa mặt phảng bờ AB vẽ 2 tiếp tuyến Ax và By. M là 1 điểm ở trên đường tròn sao cho tiếp tuyến tại M cắt Ax tại C , By tại D a)ABDC là hình gì? Vì sao? b)cm : góc ABM=90° c)cm: AC + BD=CD
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho góc COD=90 độ(Olaf trung điểm của AB).CMR:
a) CD=AC+BD
b) CD là tiếp tuyến của đường tròn đường kính AB
c) AC.BD=\(\dfrac{AB^2}{4}\)
Cho nửa đường tròn (O; R) đường kính AB. Kẻ Ax và By là hai tiếp tuyến của nửa đường tròn tại A và B. Trên Ax lấy điểm C bất kì, đường thẳng qua O và vuông góc với OC cắt By tại D. a) Chứng minh AC. BD = R2 . b) Chứng minh tam giác COD đồng dạng với tam giác ODB. c) Chứng minh CD là tiếp tuyến của (O). e) Tìm vị trí của điểm C trên Ax để tứ giác ACDB có chu vi nhỏ nhất.
Cho nửa đường tròn (O;R). Trên cùng 1 nửa mp bờ là AB, dựng cac tiếp tuyến Ax, By của (O). Lấy M thuộc đường tròn. Tiếp tuyến tại M của (O) cắt Ax, By tại D, C tua AM, BM kéo dài cắt By, Ax tại F, E. Dựng MH vuông góc với AB. CHứng minh: AC, BD đi qua trung điểm I của MH