Cho ba điểm A,B,C cố định thẳng hàng theo thứ tự đó. Đường tròn tâm O di động luôn đi qua B, C. kẻ qua A các tiếp tuyến AE, AF đến đường tròn tâm O. Gọi E,F là hai tiếp điểm . Gọi I là trung điểm của BC và K là giao của FI với đường tròn tâm O. CMR: véc tơ EK và véc tơ AB cùng phương
Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng
Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng
Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng
Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
Cho ΔABC. Gọi 2 điểm M, N thay đổi và thỏa mãn:
\(\overrightarrow{MN}=2\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\)
Chứng minh MN luôn đi qua 1 điểm cố định
cho hình bình hành ABCD tâm O . 2 đ' M và N di động sao cho \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\) .cmr MN luôn đi qua 1 đ' cố định
Cho tam giác ABC.Trên tia AB,AC lấy E,F sao cho AB=(2k+1)AE và AC=(k-2)AF. Chứng minh rằng đường thẳng EF luôn đi qua 1 điểm cố định khi k thay đổi
cho tam giác ABC gọi K là điểm xác định bởi ( 2vectoKA+3vectoKB+vectoKC=vecto0) .gọi M,N là hai điểm phân biệt thõa mãn ( vectoMN= 2vectoMA+3vectoMB+vectoMC) chứng minh M,N luôn đi qua một điểm có định
Cho 2 điểm A,B cố định và số k>0.Tìm xem M di động trên đường cố định nào, biết \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=k\)
gọi M và N lần lượt là trung điểm các đoạn thẳng AB và CD . Chứng minh rằng: 2 nhân vector MN = vector AC + vector BD = vector AD + vector BC