Cho điểm \(A\left(1;0;0\right)\) và đường thẳng \(\Delta:\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=t\end{matrix}\right.\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng \(\Delta\) ?
b) Tìm tọa độ điểm A' đối xứng với A qua đường thẳng \(\Delta\) ?
Cho mặt phẳng \(\left(\alpha\right):2x+y+z-1=0\) và đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y}{1}=\dfrac{z+2}{-3}\)
Gọi M là giao điểm của d và \(\left(\alpha\right)\), hãy viết phương trình của đường thẳng \(\Delta\) đi qua M vuông góc với d và nằm trong \(\left(\alpha\right)\) ?
Cho điểm \(M\left(1;-1;2\right)\) và mặt phẳng \(\left(\alpha\right):2x-y+2z+12=0\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\left(\alpha\right)\)
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (\(\alpha\))
Cho điểm \(M\left(1;4;2\right)\) và mặt phẳng \(\left(\alpha\right):x+y+z-1=0\) :
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\left(\alpha\right)\)
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng \(\left(\alpha\right)\)
c) Tính khoảng cách từ điểm M đến mặt phẳng \(\left(\alpha\right)\)
Tính khoảng cách từ điểm \(A\left(1;0;1\right)\) đến đường thẳng \(\Delta:\dfrac{x-1}{2}=\dfrac{y}{2}=\dfrac{z}{1}\)
Trong không gian với hệ trục tọa độ 0xyz , cho đường thẳng (d) \(\dfrac{x+1}{1}=\dfrac{y}{1}=\dfrac{Z-1}{-2}\). gọi (\(\Delta\)) là đường thẳng đi qua M(-1;0;-5) cắt và vuông góc với (d).một véctơ chỉ phương của (\(\Delta\)) là.
A.\(\overrightarrow{u}\)(-1;1;0) B.\(\overrightarrow{u}\)(3;1;2) C.\(\overrightarrow{u}\)(1;3;2) D.\(\overrightarrow{u}\)(1;1;1)
Giải giúp mình với , ths trước nha
trong không gian với hệ tọa độ Oxyz cho 2 đường thẳng d1: \(^{\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z}{2}}\) , d2: \(\dfrac{x}{1}=\dfrac{y-1}{2}=\dfrac{z}{1}\)
Đường tahnwgr d đi qua A(5;-3;5) cắt d1, d2 tại B,C. Độ dài BC là:
Cho đường thẳng \(\Delta:\dfrac{x+3}{2}=\dfrac{y+1}{3}=\dfrac{z+1}{2}\) và mặt phẳng \(\left(\alpha\right):2x-2y+x+3=0\)
a) Chứng minh rằng \(\Delta\) song song với \(\left(\alpha\right)\)
b) Tính khoảng cách giữa \(\Delta\) và \(\left(\alpha\right)\)
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau :
a) d đi qua điểm \(M\left(5;4;1\right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left(2;-3;1\right)\)
b) d đi qua điểm \(A\left(2;-1;3\right)\) và vuông góc với mặt phẳng \(\left(\alpha\right)\) có phương trình \(x+y-z+5=0\)
c) d đi qua điểm \(B\left(2;0;-3\right)\) và song song với đường thẳng \(\Delta:\left\{{}\begin{matrix}x=1+2t\\y=-3+3t\\z=4t\end{matrix}\right.\)
d) d đi qua 2 điểm \(P\left(1;2;3\right)\) và \(Q\left(5;4;4\right)\)