Sửa đề :
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)
Bài làm
đề có sai chỗ nào ko bn,mk thấy chỗ giả thiết sai sai thì phải,bn kt lại giúp mk
Sửa đề :
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\)
Bài làm
đề có sai chỗ nào ko bn,mk thấy chỗ giả thiết sai sai thì phải,bn kt lại giúp mk
cho \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
tính giá trị biểu thức \(P=x^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{2023}\)
Cho x,y,z khác 0 và A=\(\dfrac{y}{z}\)+\(\dfrac{z}{y}\) ; B=\(\dfrac{x}{z}+\dfrac{z}{x}\); C=\(\dfrac{x}{y}+\dfrac{y}{x}\)
Tính giá trị biểu thức : A2+B2+C2-ABC
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
Chứng minh rằng :\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Cho các số a,b,c khác 0. Tính giá trị của biểu thức:
T=\(x^{2016}+y^{2016}+z^{2016}\) biết x,y,z thõa mãn \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
Cho a,b,c và x,y,z là các số khác nhau và khác không chứng minh rằng nếu:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) thì \(\dfrac{x^2}{a^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{c^2}=1\)
Bài 1 :
Cho x, y, z \(\ne0\) ; A = \(\dfrac{y}{z}+\dfrac{z}{y}\) ; B = \(\dfrac{z}{x}+\dfrac{x}{z}\) ; C = \(\dfrac{x}{y}+\dfrac{y}{x}\)
Tính A\(^2\) + B\(^2\) + C\(^2\) - ABC
Bài 2 :
Cho x = \(\dfrac{a}{b+c}\) ; y = \(\dfrac{b}{c+a}\) ; z = \(\dfrac{c}{a+b}\)
Tính xy + yz + xz + 2xyz
Bài 3: Rút gọn
\(A=\left(1+\dfrac{b^2+c^2-a^2}{2abc}\right)\times\dfrac{1+\dfrac{a}{b+c}}{1-\dfrac{a}{b+c}}\times\dfrac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
Xét 2 biểu thức:
P=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
và Q=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
a,Chứng minh rằng P=1 thì Q=0
b,Nếu Q=0 thì có nhất thiết là P=1 không?
( Tìm x,y,z biết : [ a,b,c,d] )
a) \(\dfrac{x}{2}=\dfrac{y}{3}\) và xy = 54
b) \(\dfrac{x}{5}=\dfrac{y}{3}\), \(x^2-y^2=4\) với x,y > 0
c) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\) và \(x+y+z=92\)
1.Cho x+y+z=0 ,rút gọn:
\(A=\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
2.Tính \(A=\dfrac{x-y}{x+y}\)biết x2-2y2=xy (y khácx;x+y khác 0)
Cho x,y,z khác 0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
CMR:\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)