Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-a+b-c}{a+b+c-a+b-c}=\dfrac{\left(a-a\right)+\left(c-c\right)+b+b}{\left(a-a\right)+\left(c-c\right)+b+b}=\dfrac{2b}{2b}=1\)
Nên
\(a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\Rightarrow c=0\)