\(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(P=\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)\(\)
\(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)
\(P=\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)\(\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
CM: \(\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{b}{a}\)
và a+b+c+d=0. Tính giá trị biểu thức sau :
\(\dfrac{2a-b}{c+d}+\dfrac{2b-c}{d+a}+\dfrac{2c-d}{a+b}+\dfrac{2d-a}{b+c}\)
Bài 1 : Cho \(\dfrac{U+2}{U-2}\) = \(\dfrac{V+3}{V-3}\) và \(U^2\) + \(V^2\) = 52 .
Tính U ; V .
Bài 2 : Cho \(\dfrac{x}{y}=\dfrac{z}{t}\) . Cmr \(\dfrac{x.y}{z.t}=\dfrac{\left(x+y\right)^2}{\left(z+t\right)^2}\) .
Bài 3 : Cho \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=\text{4}\) . Tính M \(\dfrac{a-3b+2c}{a'-3b'+2c'}\) .
Bài 4 : Cho \(\left(a_2\right)^2=a_1.a_3;\left(a_3\right)^2=a_2.a_4\) .
Cmr \(\dfrac{\left(a_1\right)^2+\left(a_2\right)^2+\left(a_3\right)^2}{\left(a_2\right)^2+\left(a_3\right)^2+\left(a_4\right)^2}=\dfrac{a_1}{a_3}\) .
Bài 5 : Cho \(\dfrac{a}{c}=\dfrac{c}{b}\) . Cmr :
a) \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
b) \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-c}{a}\)
Cho biết \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\)=\(\dfrac{d}{a}\)
Tính giá trị biểu thức M
\(\dfrac{2a-b}{c+d}\)+\(\dfrac{2b-c}{a+d}\)+\(\dfrac{2c-d}{a+b}\)+\(\dfrac{2d-a}{c+b}\)
Cho \(\dfrac{a}{2b+c}=\dfrac{b}{2c+a}=\dfrac{c}{2a+b}\left(a;b;c>0\right)\)
Tính:\(\dfrac{2b+c}{a}+\dfrac{2c+a}{b}+\dfrac{2a+b}{c}\)
ba số a,b,c,khác 0 và a+b+c\(\ne\)0,thỏa mãn điều kiện \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
tính giá trị của biểu thức \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
Tính giá trị biểu thức:
a)\(A=\dfrac{2a-5b}{a-3b}\) với \(\dfrac{a}{b}=\dfrac{3}{4}\)
b) \(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\) với\(a-b=7\)và\(a\ne-3,5;b\ne3,5\)
1, Tính giá trị của biểu thức N= \(\dfrac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
2, Tìm 3 số a,b,c biết : \(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\) và a + b + c = -50