Đặt a/2=b/5=c/7=k
=>a=2k; b=5k; c=7k
\(A=\dfrac{a-b+c}{a+2b-c}\)
\(=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{2-5+7}{2+10-7}=\dfrac{4}{5}\)
Đặt a/2=b/5=c/7=k
=>a=2k; b=5k; c=7k
\(A=\dfrac{a-b+c}{a+2b-c}\)
\(=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{2-5+7}{2+10-7}=\dfrac{4}{5}\)
Cho \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) . Tim gia tri cua bieu thuc A=\(\dfrac{a-b+c}{a+2b-c}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
b, \(\dfrac{c}{a+c}=\dfrac{b}{b+d}\)
c, \(\dfrac{a+b}{a}=\dfrac{d}{c+d}\)
d, \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
e, \(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
f, \(\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{c^2+d^2}{c^2-d^2}\)
Câu 1: Chứng tỏ rằng: \(8^7-2^{18}⋮14\)
Câu 2: Cho \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\). Tính \(A=\dfrac{a-b+c}{a+2b-c}\)
Câu 3: Tìm GTNN của \(A=x\left(x+2\right):2\left(x-\dfrac{3}{2}\right)\)
a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+4c}{b+4d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\)
c) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-2b}{c-2d}\)
d) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a-2b}{5c-2d}\)
I.Tính
B=2021-\(\dfrac{5}{3}-\dfrac{5}{6}-\dfrac{5}{10}-\dfrac{5}{15}-\dfrac{5}{21}-\dfrac{5}{28}-\dfrac{5}{36}-\dfrac{5}{45}\)
II.Tìm 3 số a,b,c biết \(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\) và a+b+c=-50
III.Cho M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}=\dfrac{c}{c+a}\) với a,b,c là các số dương.Chứng minh M không phải là số nguyên
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh :
a, \(\dfrac{a^3+b^3}{c^3+d^3} = \dfrac{a^3-b^3}{c^3-d^3}\)
b, \(\dfrac{(a+b)^3}{(c+d)^3}=\dfrac{a^3+b^3}{c^3+d^3}\)
c, \(\dfrac{(a-b)^3}{(c-d)^3}=\dfrac{3a^2+2b^2}{3c^2+2d^2}\)
d, \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)
e, \(\dfrac{a^{10}+b^{10}}{(a+b)^{10}} = \dfrac{c^{10}+d^{10}}{(c+d)^{10}}\)
Bài 1: Cho a,b,c khác 0 và a+b+c = \(\dfrac{a+2b-c}{c}=\dfrac{b+2c-a}{a}=\dfrac{c+2a-b}{b}\)
Tính P= \(\left(2+\dfrac{a}{b}\right)\left(2+\dfrac{b}{c}\right)\left(2+\dfrac{c}{a}\right)\)
cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\left(a+b+c+d\ne0\right)\). tính \(P=\dfrac{2a-b}{c+d}+\dfrac{2b-c}{a+đ}+\dfrac{2c-d}{a+b}+\dfrac{2c-a}{b+c}\)