Ta có: \(\widehat{BOM}+\widehat{NOC}=120\)
\(\widehat{ONC}+\widehat{NOC}=120\)
Từ đó có: \(\widehat{BOM}=\widehat{ONC}\)
Xét tgiac BOM và CNO có:
\(\widehat{BOM}=\widehat{ONC}\left(CMT\right)\)
\(\widehat{B}=\widehat{C}=60\)
SUy ra \(\Delta BOM\sim\Delta CNO\left(g-g\right)\Rightarrow\frac{BM}{OC}=\frac{OB}{CN}\Rightarrow BM.CN=OB.OC\)
ÁP dụng cosi có:
\(OB.OC\le\frac{\left(OB+OC\right)^2}{4}=\frac{BC^2}{4}\)