Cho tam giác ABC vuông tại a kẻ đường cao AH, HE vuông AB tại E, HF vuông AC tại F a) Chứng minh AEHF là hình chữ nhật b) Gọi M trung điểm HB. Chứng minh ME vuông EF c) Gọi AD là trung tuyến của tam giác ABC, N trung điểm HC. Chứng minh rằng: AD=ME+NF Mong mọi người giúp
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE, HF vuông góc với AB, AC lần lượt tại E và F. Gọi M, N, P lần lượt là trung điểm của BC, HB, HC. a) Chứng minh tứ giác AEHF là hình chữ nhật b) Chứng minh EN = 1 2 HB c) C/ minh tứ giác NEFP là hình thăng vuông, tính diện tích của nó biết AB = 6m, AC = 8cm d) Chứng minh AM // EN
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH, trung tuyến AM. Gọi D, E theo thứ tự là hình chiếu của H trên AB và AC.
a) Tứ giác AEHD là hình gì? Vì sao?
b) Gọi giao của AM với HE là N. CMR: ABHN là hình thang cân
c) Tứ giác EDBN là hình gì? Vì sao?
Mọi ng cứu mình với mình đang cần rất rất gấp. Cảm ơn mọi người!
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ \(HD\perp AD\left(D\in AB\right)\) và \(HE\perp AC\left(E\in AC\right)\). Gọi I là trung điểm của BH, K là trung điểm của CH
a) CMR: tứ giác ADHE là hình chữ nhật.
b)CMR : DI + EK = \(\frac{BC}{2}\)
c) Gọi M là trung điểm BC, N là giao điểm của AM và HE. CMR: tứ giác BDEN là hình bình hành.
d) Khi BC cố định, tam giác ABC vuông tại A cần thêm ĐK gì để diện tích tứ giác DEKI lớn nhất.
Cho △ABC vuông tại A, đường phân giác của góc A cắt BC tại D. Gọi I là trung điểm của DC và E là điểm đối xứng với A qua I.
a) Chứng minh tứ giác ADEC là hình bình hành.
b) Từ D kẻ DM vuông góc với AB (M ∈ AB), kẻ DN vuông góc với AC (N ∈ AC). Chứng minh tứ giác AMDN là hình vuông.
c) Chứng minh ba điểm M,D,E thằng hàng
ho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Gọi M, N, P là trung điểm của các cạnh AB, AC, BC, MN cắt AC tại I. a) Chứng minh I là trung điểm của AH b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành. c) Xác định dạng của tứ giác MHPN d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng