\(Cho\) \(\Delta ABC\) , trên nửa mặt phẳng bờ là đường thẳng AC không chứa B , vẽ tia \(AD\) sao cho \(\widehat{DAC}=\widehat{ACB}\) . Trên nửa mặt phẳng bờ là đường thẳng \(AB\) không chứa C , vẽ tia \(AE\) sao cho \(\widehat{EAB}=\widehat{ABC}\) . Chứng minh ba điểm E , A , D thẳng hàng . ( Biết \(\Delta ABC=\widehat{A}+\widehat{B}+\widehat{C}=180^o\))
Hình bạn tự vẽ nha!
Ta có: \(\widehat{DAC}=\widehat{ACB}\left(gt\right)\)
Mà 2 góc này ở vị trí so le trong đối với hai đường thẳng \(DA,BC\) và cát tuyến \(AC.\)
=> \(AD\) // \(BC\) (1)
Lại có: \(\widehat{EAB}=\widehat{ABC}\left(gt\right)\)
Mà 2 góc này ở vị trí so le trong đối với hai đường thẳng \(EA,BC\) và cát tuyến \(AB.\)
=> \(EA\) // \(BC\) (2)
Từ (1) và (2) => \(AD\) // \(EA.\)
=> 3 điểm \(E,A,D\) thẳng hàng \(\left(đpcm\right).\)
Chúc bạn học tốt!
hình thì bn tự vẽ nha
Ta có: ˆDAC=ˆACB(gt)DAC^=ACB^(gt)
Mà 2 góc này ở vị trí so le trong đối với hai đường thẳng DA,BCDA,BC và cát tuyến AC.AC.
=> ADAD // BCBC (1)
Lại có: ˆEAB=ˆABC(gt)EAB^=ABC^(gt)
Mà 2 góc này ở vị trí so le trong đối với hai đường thẳng EA,BCEA,BC và cát tuyến AB.AB.
=> EAEA // BCBC (2)
Từ (1) và (2) => ADAD // EA.EA.
=> 3 điểm E,A,DE,A,D thẳng hàng (đpcm).
tick cho mình nha mn♥