Cho \(\Delta ABC\) đều. H là trung điểm của BC. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE, các đường vuông góc với BC hạ từ D,E lần lượt cắt BC tại M và N. DE cắt BC tại I.
a. Chứng minh: \(\Delta ABH=\Delta ACH\)
b. Chứng minh: I là trung điểm của đoạn DE
c. Đường thẳng đi qua I và vuông góc với DE cắt đường thẳng AH tại K. Chứng minh rằng: \(CK\perp AC\)
Lời giải:
a)
Xét tam giác $ABH$ và $ACH$ có:
\(AB=AC\) do tam giác $ABC$ đều
\(BH=CH=\frac{BC}{2}\)
\(AH\) chung
\(\Rightarrow \triangle ABH=\triangle ACH(c.c.c)\)
b) Vì tam giác $ABC$ đều nên \(\widehat{DBM}=\widehat{ACH}\)
Mà \(\widehat{ACH}=\widehat{ECN}\) (đối đỉnh)
\(\Rightarrow \widehat{DBM}=\widehat{ECN}\)
Xét 2 tam giác vuông $BDM$ và $CEN$ có:
\(\left\{\begin{matrix} BD=CE\\ \widehat{DBM}=\widehat{ECN}\end{matrix}\right.\Rightarrow \triangle BDM=\triangle CEN(ch-gn)\)
\(\Rightarrow DM=EN\)
Lại có: \(DM\parallel EN\) (cùng vuông góc với BC)
\(\Rightarrow \widehat{MDI}=\widehat{NEI}\) ( so le trong)
Xét tam giác $MDI$ và $NEI$ có:
\(\widehat{MDI}=\widehat{NEI}(cmt)\)
\(DM=EN\)
\(\widehat{DMI}=\widehat{ENI}=90^0\)
\(\Rightarrow \triangle MDI=\triangle NEI(g.c.g)\Rightarrow DI=EI\), do đó $I$ là trung điểm của $DE$
c) Vì $I$ là trung điểm của $DE$ (đã chứng minh ở phần b)
Mà \(KI\perp DE\) nên $KI$ là đường trung trực của $DE$
Do đó: \(KD=KE\)
Mặt khác: Vì theo phần a, \(\triangle AHB=\triangle AHC\Rightarrow \widehat{AHB}=\widehat{AHC}\)
Mà \(\widehat{AHB}+\widehat{AHC}=180^0\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0\)
Do đó: \(AH\perp BC\) hay $KH\perp BC$
Mà $H$ là trung điểm $BC$ nên $KH$ là đường trung trực của $BC$
Do đó: \(KB=KC\)
Xét tam giác $BDK$ và $CEK$ có:
\(BD=CE\) (giả thiết)
\(BK=CK\) (cmt)
\(DK=EK\) (cmt)
\(\Rightarrow \triangle BDK=\triangle CEK(c.c.c)\)
\(\Rightarrow \widehat{DBK}=\widehat{ECK}\)
Lại thấy: \(\widehat{DBK}=\widehat{ABK}=\widehat{ACK}\) (dễ thấy do \(\triangle ABK=\triangle ACK(c.c.c)\) ))
Do đó: \(\widehat{ECK}=\widehat{ACK}\) . Hai góc này lại là 2 góc bù nhau nên mỗi góc bằng $90^0$
\(\Rightarrow AC\perp CK\) (đpcm)