Xét \(\Delta AMB\) và \(\Delta ANC\) có:
AB = AC (\(\Delta ABC\) cân tại A)
vì BM là trung tuyến => AM = MC
CN là trung tuyến => AN = NB
mà AB = AC (\(\Delta ABC\) cân tại A) => AM = MC = AN = NB
=> AM = AN (cmt)
\(\widehat{A}\) chung
=> \(\Delta AMB=\Delta ANC\left(c.g.c\right)\)
=> \(\widehat{ABM}=\widehat{ACN}\) (2 cạnh tương ứng)
Ta có:
\(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)
\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)
Mà \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
=> \(\widehat{ABM}+\widehat{MBC}=\widehat{ACN}+\widehat{NCB}\)
mà \(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
=> \(\widehat{MBC}=\widehat{NCB}\)
\(\Delta GBC\) có: \(\widehat{GBC}=\widehat{GCB}\left(cmt\right)\)
=> \(\Delta GBC\) cân tại G (đpcm)