Cho tam giác ABC. Trên cạnh AB lấy điểm D, cạnh AC lấy điểm E sao cho BD = CE. Gọi M, N, P, Q lần lượt là trung điểm của BC, CD, DE, EB.
a) Tứ giác MNPQ là hình gì?
b) Phân giác góc A cắt cạnh BC tại F. Chứng minh rằng PM song song với AF.
c) Đường thẳng QN cắt AB và AC lần lượt ở I và K. Tam giác AIK là tam giác gì?
Cho tam giác ABC. Trên các cạnh AB,AC lấy D,E sao cho BD=CE. Gọi M,N,I,K lần lượt là giao điểm của DE,BC,BE,CD.
a, Tứ giác MINK là hình gì ? vì sao ?
Gọi G,H lần lượt là giao điểm của IK với AB,AC. chứng minh tam giác AGH cân
cho tam giác ABC trên AB lấy điểm D , trên AC lấy điểm E sao cho BD = CE . Gọi M,N,P,Q lần lượt là trung điểm của các cạnh BC, CD, DE, và EB .
a) tứ giác MNPQ là hình gì b) phân giác của góc A cắt BC tại F . chứng minh PM/AF c) Đường thẳng QN cắt AB và AC tại I và K. Tam giác AIK là tam giác gì vì sao1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC
a, Tứ giác BMNC là hình gì ?
b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?
c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .
d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông
2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E
a, Chứng minh tam giác BME cân
b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?
c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng
d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M trên AB, AC.
a) Chứng minh DE = AM.
b) Chứng minh tứ giác BDEM là hình bình hành.
c) Gọi O là giao điểm của BE và DM. Gọi I là trung điểm EC. Chứng minh tứ giac AOMI là hình thang cân.
d) Vẽ đường cao AH của tam giác ABC. Tính số đo góc DHE.
Cho \(\Delta\)ABC phân giác trong đỉnh A cắt BC tại D trên các đoạn thẳng DB, DC lần lượt lấy các điểm E và F sao cho góc EAD= góc FAD. Chứng minh rằng: \(\dfrac{BE}{CE}.\dfrac{BF}{CF}=\dfrac{AB^2}{AC^2}\)
Cho tam giác ABC có 3 góc nhọn (AB>AC), đường cao AH. Gọi M,N,E lần lượt là trung điểm của các cạnh AB, AC và BC.
a) Chứng minh rằng BMNE là hình bình hành
b) CHứng minh rằng MN là đường trung trực của AH và tứ giác MNHE là hình thang cân
c) Gọi I là giao điểm của MN với A,F là hình chiếu của N lên BC, K là hình chiếu của H lên AC. CHứng minh rằng IF vuông góc với HK.
các bạn giải chi tiết giúp mình nhe
Bài 2: (4,5điểm) Cho tam giác ABC vuông tại A. Gọi D là trung điểm của BC. Từ D kẻ DM vuông góc với AB(M thuộc AB), DN vuông góc với AC (N thuộc AC). Trên tia DN lấy điểm E sao cho N là trung điểm của DE.
a)Tứ giác AMDN là hình gì? Vì sao?
b) Chứng minh: N là trung điểm AC.
c) Tứ giác ADCE là hình gì ? Vì sao?
d) Tam giác ABC cần có thêm điều kiện gì để tứ giác ABCE là hình thang cân.
e) Tam giác ABC cần có thêm điều kiện gì để tứ giác ABCE là hình thang vuông.
Bài 2: (4,5điểm) Cho tam giác ABC vuông tại A. Gọi D là trung điểm của BC. Từ D kẻ DM vuông góc với AB(M thuộc AB), DN vuông góc với AC (N thuộc AC). Trên tia DN lấy điểm E sao cho N là trung điểm của DE.
a)Tứ giác AMDN là hình gì? Vì sao?
b) Chứng minh: N là trung điểm AC.
c) Tứ giác ADCE là hình gì ? Vì sao?
d) Tam giác ABC cần có thêm điều kiện gì để tứ giác ABCE là hình thang cân.
e) Tam giác ABC cần có thêm điều kiện gì để tứ giác ABCE là hình thang vuông.