Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Cho dãy số ($u_n$) biết \(u_{n+1}=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\) . Xác dịnh số hạng thứ 50 của dãy số 

\(u_{n+1}=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2n-1\right)\cdot\left(2n+1\right)}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{n}{2n+1}\)

=>\(u_{50}=u_{49+1}=\dfrac{49}{2\cdot49+1}=\dfrac{49}{99}\)


Các câu hỏi tương tự
vvvvvvvv
Xem chi tiết
Thiên Yết
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Ái Nữ
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Kamato Heiji
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
vvvvvvvv
Xem chi tiết