Theo t/c đường phân giác:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{5}{10}=\dfrac{1}{2}\)\(\Rightarrow AB=\dfrac{2.7,5}{1}=15\left(cm\right)\)
Có: DE//AB
\(\Rightarrow\Delta CDE\sim\Delta CBA\)
\(\Rightarrow\dfrac{EC}{AC}=\dfrac{CD}{BC}=\dfrac{DE}{AB}=\dfrac{5}{5+7,5}=\dfrac{2}{5}\)
\(\Rightarrow EC=\dfrac{2.10}{5}=4\left(cm\right)\)
\(\Rightarrow AE=10-4=6\left(cm\right)\)
\(\Rightarrow DE=\dfrac{2.15}{5}=6\left(cm\right)\)
Theo tính chất đường phân giác:
BDAB=CDAC=510=12⇒AB=2.7,51=15(cm)
Có: DE//AB
⇒ΔCDE∼ΔCBA
⇒ECAC=CDBC=DEAB=55+7,5=25
⇒EC=2.105=4(cm)
⇒AE=10−4=6(cm)