a: ta có: AB⊥AC
KE⊥AC
Do đó: AB//KE
b: Ta có: AB//KE
nên \(\widehat{ABC}=\widehat{KEC}\)
c: Xét ΔABC vuông tại A và ΔKEC vuông tại K có
CA=CK
\(\widehat{ACB}=\widehat{KCE}\)
Do đó: ΔABC=ΔKEC
Suy ra: BC=EC
a: ta có: AB⊥AC
KE⊥AC
Do đó: AB//KE
b: Ta có: AB//KE
nên \(\widehat{ABC}=\widehat{KEC}\)
c: Xét ΔABC vuông tại A và ΔKEC vuông tại K có
CA=CK
\(\widehat{ACB}=\widehat{KCE}\)
Do đó: ΔABC=ΔKEC
Suy ra: BC=EC
Cho tam giácABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng:
a) AB // KE b) Góc ABC = Góc KEC; BC = CE
Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của đoạn thẳng BC và E là trung điểm của đoạn thẳng AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM
a) Chứng minh ΔABM = ΔACM
b) Chứng minh AM vuông góc với BC
c) Chứng minh ΔAEH = ΔCEM
d) Gọi D là trung điểm của đoạn thẳng AB. Từ B vẽ đường thẳng song song với đường thẳng AM, đường thẳng này cắt tia MD tại K. Chứng minh ba điểm H, A, K thẳng hàng
Cho ABC, BD vuông góc với AC, CE vuông góc với AB. Trên tia đối của BD, lấy H sao cho BH = AC, trên tia đối của CE, lấy K sao cho CK = AB. Chứng minh AH = AK
Cho ΔABC có ba góc nhọn, đường thẳng AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD
a. Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD
b. Chứng minh CA = CD và BD = BA
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
d) Chứng minh Dn vuông góc DH
1) Cho tam giác ABC có góc B = 2 lần góc c tia P. giác của Góc b cắt AC ở D trên tia đối của tia BD lấy điểm E sao cho BE = AC . Trên tia đối của tia CD lấy điểm K sao cho CK = AB . Chứng minh rằng : AE = AK
2) cho tam giác ABC các tia PG của góc B và C cắt tại O . Kẻ OD vuông với AD , OE Vuông với AD . Chứng minh rằng : OD = OE
3) cho tam giác ABC có AB = AC lấy điểm d trên cạnh AB . Điểm E trên cạnh AD , sao cho AD = AE Chứng minh rằng : BE = CD
Cho tam giác ABC vuông tại A có AB nhỏ hơn AC. Gọi M là trung điểm của cạnh BC. Trên đoạn AM lấy điểm E bất kì khác A và M. Trên tia đối của tia MA lấy điểm F sao cho M là trung điểm của EF
a) Chứng minh \(\Delta BME=\Delta CMF\)
b) Từ C kẻ đường thẳng vuông góc với AC cắt tai AM tại N. Chứng minh góc ABE bằng góc NCF
Giúp mk vs:
1. Cho tam giác ABC có 3 góc đều nhọn. Trên tia đối AB lấy D sao cho AB=AD.Trên tia đối AC lấy AC=AE. Gọi M là trung điểm DE,N là trung đểm CD.
a. Chứng minh M,N,A thẳng hàng
b.Kẻ tia Ax bất kì nằm giữ AB và AC . Gọi H và K lần lượt là hình chiếu của BC trên tia Ax. Chứng minh BH+CK >=BC
c.Xác định vị trí tia Ax để BH+CK đạt kết quả lớn nhất
2.Cho tam giác ABC nhon.Trên các đường trung trực AB,AC,BC kẻ từ các trung điểm I,K,O của các cạnh này vè miền ngoài tam giác lấy điểm tương ứng M,N,P sao cho IM=1/2 Ab,KN=1/2 AC, OP=1/2 BC
a. Chứng minh AP vuông góc MN , AP=MN
b. Chứng minh BN=MP
Chùi ui có thánh nào tốt bụng giải giúp con bài này đi ạ!!!
Cho tam giác ABC có AB = AC, D thuộc AB. Trên tia đối của tia CA lấy điểm E sao cho CE = BD, kẻ DH vuông góc với BC , EK vuông góc với BC (H, K thuộc BC)
a) CM : DH = EK
b) Gọi M là trung điểm của HK. CM: D, M, E thẳng hàng