Cho \(\Delta\)ABC vuông tại A, đường cao AH, gọi M và N lần lượt là hình chiếu của H trên BC và AC
a) Chứng minh: \(\widehat{ABC}=\widehat{NMA}\)
b) Chứng minh: BK \(\perp\)AI
Các bạn giải hộ mk nhé. Câu a thôi cx dc. Không cần vẽ hình. Mai mk nộp rồi
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là hình chiếu vuông góc của H trên các cạnh AB và AC. Chứng minh: \(S_{ABC}\ge4S_{ADE}\)
Cho ΔABC vuông tại A ( AB<AC), có đường cao AH. Trên nữa mặt phẳng bờ là AH có chứa C vẽ hình vuông AHKE
a) gọi p là giao điểm của AC và KE. Chứng minh tam giác ABP vuông cân
b)gọi Q là đỉnh thứ 4 của hình bình hành APQB, I là giao điểm của BP và AQ. Chứng minh ba điểm H, I, E thẳng hàng
d)chứng minh HEKQ là hình thang
Cho hình chữ nhật ABCD. Vẽ BH ⊥ AC tại H. Gọi M, O, K lần lượt là trung điểm của AH, BH và CD. Tia CO cắt MB tại E. Tia MO cắt EH và BC lần lượt tại F và N
a, Tứ giác MOCK là hình gì
b, Chứng minh MK ⊥ MB
c, Chứng minh NE . FH = FE . NH
p/s: help em câu c với ạ
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh:\(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh: \(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A Vẽ đường cao AH, AB = 6 cm ,AC bằng 8 cm a ,chứng minh tam giác HBA đồng dạng với tam giác ABC
b ,Chứng tính: BC, AH,BH
C,Gọi I và K lần lượt là hình chiếu của điểm H trên AB, AC .Chứng minh AI nhân AB = AK nhân AC