Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B, C, lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC, AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q(Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa
Cho tam giác ABC vuông tại A , có AB=9cm , AC=12cm
a)Tính BC
b) Đường trung tuyến AM và đường trung tuyến BN cắt nhau tại G . Tính AG
c) Trên tia đối của NB, lấy điểm D sao cho NB=ND . Chứng minh CD vuông góc với AC
có thể vẽ lun hình giúp mình lun đc không ? pls
hk biết vẽ .
Cho ∆ABC cân tại A (A<90 độ) . Hai đường cao BD và CE cắt nhau tại H . Tia AH cắt BC tại I
a CMR ∆ABD=∆ACE
b CM I trung điểm BC
c từ C kẻ đường thẳng d vuông AC , d cắt AH tại F . CMR CB pg' ^FCH
d Giả sử ^BAC = 60 độ , AB = 4cm
Tính khoảng cách từ B đến đường thẳng CF
Giúp mình với
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường trong (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC và (O) lần lượt tại F và K (K≠A). Gọi L là hình chiếu cuả D lên AB.
a, C/m: Tứ giác BEDC nội tiếp và BD2 = BL.
b, Gọi J là giao điểm của KD và (O) ,(J ≠K). C/m: ^BJK=^BDE
c, Gọi I là giao điểm của BJ và ED. C/m: Tứ giác ALIJ nội tiếp và I là trung điểm của ED
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC. Từ C kẻ đường thẳng song song với AB cắt đường thẳng MN tại E. Chứng minh rằng:
a)△ANM = △CNE và CE = MB
b) △BMC = △ECM và MN// BC; MN = \(\frac{1}{2}\) BC
Cho tam giác ABC cân tại A(AB>BC).Gọi I là trung điểm AB.Qua I kẻ đừờng thẳng vuông góc với AB và cắt đừờng thẳng BC tại D.
A)Chứng minh tam giác DIB=tam giác DIA.
B)Trên tia đối của AD lấy E sao cho AE=CD.Chứng minh BE=DA.
C)Chứng minh BE>DI
Cho tam giác ABC vuông tại Acó AB = 20cm, AC =21cm .Đường phân giác góc BAC cắt cạnh BC tại D.
a/Tính độ dài các đoạn thẳng DB, DC, BC.
b/ Qua D kẻ đường thẳng song song với AC cắt AB ở E ,qua D kẻ đường thẳng song song với AB cắt AC ở F .Tứ giác AEDF là hình gì ? Tính diện tích tứ giác đó.
c/Vẽ đường cao AH, tính AH,HD, AD.
d/ Vẽ trung tuyến AM tính AM,DM.
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'