a/
BC=√(AB^2+AC^2)=√9^2+12^2)=3√9+16)=3.5=15
b
AG=2/3AM=2/3.1/2.BC=5
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
a/
BC=√(AB^2+AC^2)=√9^2+12^2)=3√9+16)=3.5=15
b
AG=2/3AM=2/3.1/2.BC=5
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC nhọn và G là điểm bất kỳ trong tam giác ABC; qua G vẽ các tia vuông góc với BC' CA' AB lần lượt cắt các cạnh đó tại D, E, F. Trên các tia GD, GE, GF lấy các điểm A', B', C' sao cho GA'/BC = GB'/AC = GC'/AB. Gọi H là điểm đối xứng A' qua G
a. CM HB' song song GC'
b. CM G là trọng tâm tam giác A'B'C'
Cho tam giác ABC có góc nhọn tại A. Vẽ bên ngoài tam giác ABC các tam giác vuông cân đỉnh A là ABD và ACE. Gọi M là trung điểm của BC. Chứng minh rằng AM vuông góc với DE.
Từ điêm A nằm ngoài đường tròn (O) tã vẽ tiếp tuyến AB và cắt tuyến ACD với đường tròn sao cho tia AO nằm giữa AB và AD (B:tiếp điểm;C nằm giữa A và D).Gọi M là trung điểm của CD. a) cm AB^2=AC×AD b) cm tứ giác ABOM nt đường tròn (I) . ĐỊNH TÂM I c) đường tròn I cắt đường tròn O tại E. Cm AE là tiếp tuyến của đường tròn
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B, C, lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC, AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q(Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa
Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều
Cho tam giác ABC vuông tại Acó AB = 20cm, AC =21cm .Đường phân giác góc BAC cắt cạnh BC tại D.
a/Tính độ dài các đoạn thẳng DB, DC, BC.
b/ Qua D kẻ đường thẳng song song với AC cắt AB ở E ,qua D kẻ đường thẳng song song với AB cắt AC ở F .Tứ giác AEDF là hình gì ? Tính diện tích tứ giác đó.
c/Vẽ đường cao AH, tính AH,HD, AD.
d/ Vẽ trung tuyến AM tính AM,DM.
Cho ΔABC vuông tại A có AB=9cm, AC=12cm
a) Tính BC
b) Tia phân giác của góc B cắt cạnh AC tại D, kẻ DH⊥BC tại H. Chứng minh rằng ΔABd=ΔBHD
c) Hai đường thẳng DH và AB cắt nhau tại K . Chứng minh ΔBKC cân.
Mai mình thi rồi ai giúp mình với Plssss