\(a,\widehat{ACD}=90^0\)(góc nt chắn nửa đường tròn) nên \(AC\perp CD\) hay \(BE//CD\left(\perp AC\right)\left(1\right)\)
\(\widehat{ABD}=90^0\)(góc nt chắn nửa đường tròn) nên \(AB\perp BD\) hay \(BD//CF\left(\perp AB\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow BHCD\) là hbh
\(b,\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\) nên \(BFEC\) nội tiếp
Do đó \(B;F;E;C\) cùng thuộc 1 đường tròn tâm là trung điểm BC
\(c,\left\{{}\begin{matrix}\widehat{AFC}=\widehat{AEB}\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC\sim\Delta AEB\left(g.g\right)\\ \Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF\cdot AB=AE\cdot AC\)
\(d,\left\{{}\begin{matrix}BHCD.là.hbh\\BM=MC\left(gt\right)\end{matrix}\right.\Rightarrow HM=MD\Rightarrow H;M;D\) thẳng hàng
\(\left\{{}\begin{matrix}AO=OD\left(=R\right)\\HM=MD\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHD
\(\Rightarrow OM=\dfrac{1}{2}AH\)