Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao của AB và DC.
a) Chứng minh rằng:
b) Chứng minh rằng
c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng đều
d) Chứng minh rằng IA là phân giác của góc DIE
Cho \(\Delta\)ABC có ba góc nhọn (AB<AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC.
a. CMR: \(\Delta\)ADC=\(\Delta\)ABE
b. CMR: Góc DIB=60 độ
c. Gọi M và N lần lượt là trung điểm của CD vả BE. Chứng minh rằng \(\Delta\)AMN đều.
Bài 1. Cho ΔABC cân tại A. Trên tia đối của các tia BA và CA lấy hai điểm D và E sao cho BD = CE.
a) Chứng minh: DE // BC.
b) Chứng minh: BE = CD.
c) BE và CD cắt nhau tại K. Chứng minh: ΔKBC và ΔKDE cân.
d) Chứng minh: AK là tia phân giác của góc BAC.
e) Từ D, E kẻ DM, EN ⊥ BC. Chứng minh: DM = EN.
f) Chứng minh: ΔAMN cân.
Bài 2. Cho ΔABC có góc A nhọn. Kẻ tia Ax ⊥ AB (tia AC nằm giữa Ax và AB ). Kẻ tia Ay ⊥ AC (tia AB nằm giữa Ay và AC). Lấy điểm E và F lần lượt thuộc tia Ax và Ay sao cho AE = AB và AC = AF
a) Chứng minh: BF = CE.
b) Gọi M và N lần lượt là trung điểm của BF và CE. Chứng minh: ΔAMN vuông cân.
Bài 3. Trên cạnh BC của ΔABC lấy 2 điểm E và F sao cho BE = CF. Qua E và F vẽ các đường thẳng song song với BA chúng cắt cạnh AC tại G và H. Qua E vẽ đường thẳng song song với AC cắt AB tại D.
a) Chứng minh: AD = GE.
b) Chứng minh: ΔBDE = ΔFHC.
c) Chứng minh: AB = GE + FH.
Bài 4. Cho tam giác ABC vuông tại A và AB = 2AC. Gọi E là trung điểm của AB. Trên tia đối của tia AC lấy điểm D sao cho AB = AD. Chứng minh rằng: BC ⊥ DE.
Bài 5. Cho tam giác ABC vuông cân tại A, M là trung điểm cạnh BC, E là điểm nằm giữa M và C. Vẽ BH ⊥ AE tại H và CK ⊥ AE tại K. CMR:
a) BH = AK
b) ΔMBH = ΔMAK
c) ΔMHK vuông cân.
Cho tam giác ABC có:AB=AC kẻ AM là tia phân giác của góc BAC.a.Chứng minh tam giác ABM=tam giác ACM.b.Trên tia đối của tia MA lấy D sao cho MA=MD,chứng minh AB=CD,AB//CD.c,Gọi I,K lần lượt là trung điểm của AB và CD,chứng minh I,M,K thẳng hàng
Cho tam giác ABC cân tại A. Trên canh AB và AC lần lượt lấy các điểm M và N sao cho BM = CN
a, Chứng minh tam giác BMC = tam giác CNB
b, Chứng minh góc ABN = góc ACM
c, Chứng minh MN // BC
d, Gọi O là giao điểm của BN và CM. I là trung điểm của BC. Chứng minh ba điểm A, O, I thẳng hàng.
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại
D. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh: ABD = EBD. b) Chứng minh: BD AE
c) Gọi F là giao điểm của BA và ED. Chứng minh: AF = CE.
d) Gọi I là trung điểm của CF. Chứng minh ba điểm B, D, I thẳng hàng.
Giúp mình với ạ nhanh nha , có vẽ hình minh họa nhé
cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho AD=AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng ΔBOD = ΔCOE
c) Chứng minh: AO là tia phân giác của góc BAC
bài 9 cho tam giác ABC cân tại A . Điểm D thuộc AB ; điểm E thuộc AC sao cho AD = AE . Gọi F là giao điểm của BE và CD . Chứng minh rằng :a)BE= CD VÀ góc ABE = góc ACD b) tam giác FBC là tâm giác cân .c) tam giác FBD=tam giác FCE. d) AF là tia phân giác của góc A . e) kéo dài AF cắt BC tại M.Tam giác AMC là tam giác gì ? vì sao?