Lời giải:
Kẻ đường cao $AH$
Ta thấy:
$\frac{BH}{AB}=\cos B\Rightarrow BH=AB\cos B=6\cos 60^0=3$ (cm)
$\frac{AH}{AB}=\sin B\Rightarrow AH=AB\sin B=6\sin 60^0=3\sqrt{3}$ (cm)
$CH=BC-BH=4-3=1$ (cm)
Áp dụng định lý Pitago cho tam giác vuông $AHC$:
$AC=\sqrt{AH^2+CH^2}=\sqrt{(3\sqrt{3})^2+1^2}=2\sqrt{7}$ (cm)
