a: Xét ΔBDC có
M là trung điểm của BC
ME//BD
Do đó: E là trung điểm của DC
Suy ra: \(ED=EC=\dfrac{DC}{2}\)
mà \(AD=\dfrac{DC}{2}\)
nên AD=ED=EC
a: Xét ΔBDC có
M là trung điểm của BC
ME//BD
Do đó: E là trung điểm của DC
Suy ra: \(ED=EC=\dfrac{DC}{2}\)
mà \(AD=\dfrac{DC}{2}\)
nên AD=ED=EC
cho ΔABC có AM là đường trung tuyền ứng với BC . Trên cạnh AC lấy điểm D sao cho AD =\(\dfrac{1}{2}\) DC . Kẻ Mx song song với BD và cắt AC tại E . Đoạn BD cắt AM tại I .Chứng minh:
a) AD = DE = EC
b) SAIB = SIMB
c) SABC = 2SIBC
HELP ME !!!!!!!
cho tam giác ABC với đường trung tuyến AM. Lấy D trên AC sao cho DC = 2DA. Kẻ ME//BD (E thuộc CD). BD cắt AM tại I. Chứng minh: a) AD=DE=EC
b) IM=IA
c) Sabc=2Sibc
d)BI=3DI
Bài 1: Cho tam giác ABC cân tại A, có M là trung điểm của BC . Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F . Chứng minh:
a) EF là đường trung bình của tam giác ABC
b) AM là đường trung trực của EF .
Bài 2: Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm AM. Gọi BD cắt AC tại E. Gọi I là trung điểm EC. Chứng minh AE = EI = IC.
Bài 3: Cho tam giác ABC, đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K là trung điểm GB, GC. Chứng minh: DE // IK, DE = IK.
Cho tam giác ABC có M là trung điểm của BC ; I là trung điểm của AM ; BI cắt AC tại D. Qua M kẻ ME song song với BD (E thuộc AC) Chứng minh a) AD =DE = EC
b) IC=1/4 BD
Bài 4: Cho tam giác ABC cân tại A, có M là trung điểm của BC . Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F . Chứng minh:
a) EF là đường trung bình của tam giác ABC
b) AM là đường trung trực của EF .
Bài 5: Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm AM. Gọi BD cắt AC tại E. Gọi I là trung điểm EC. Chứng minh AE = EI = IC.
Bài 6: Cho tam giác ABC, đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K là trung điểm GB, GC. Chứng minh: DE // IK, DE = IK.
Bài 4. Cho tam giác ABC, trên cạnh AC lấy các điểm D và E sao cho AD=DE = EC. Gọi M là trung điểm của BC , BD cắt AM tại I
a) Chứng minh ME // BD
b) Chứng minh I là trung điểm của AM
c) Chứng minh ID = 1/4 BD
Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
cho tam giác ABC ,AM là đường trung tuyến (M thuộc BC ) D thuộc AC AD =1/2 DC kẻ Mx //BD và cắt AC tại E Đoạn BD cắt AM tại I
CMR
a, AD=DE=EC
b, Diện tích tam giác AIB= diện tích tam giác IBM
c,Diện tích tam giác ABC =2 Diện tích tam giác IBC