Cho ΔABC có AB = AC ( A<90 ). Kẻ BH vuông góc với AC ( H∈AC ), kẻ CK vuông góc với AB ( K∈AB ); BH cắt CK tại I. Biết ΔABH = ΔACK.
a) CM : ΔIBK = ΔICH. So sánh IK và IC
b) Gọi M là trung điểm của BC. Chứng minh ba điểm A,I,M thẳng hàng.
B1:Cho tam giác ABC cân tại A, <90độ. Kẻ BH vuông góc với AC, CK vuông góc với AB. Gọi O là giao diểm của BH và CK. CMR:
a. ABH=ACK
b.OBC cân
c.OBK=OCH
d.Trên nửa mp bờ BC không chứa điểm A lấy điểm Isao cho IB=IC. Chứng minh ba điểm A,O,I thẳng hàng
Cho tam giác ABC cân tại A .Trên tia đối của tia BC lấy điểm M .Trên tia đối của tia BC lấy N.Sao cho BM=CN.Kẻ BH vuông góc với AM,CK vuông góc với AM
a) CM: Tam giác AMN cân tại A
b)CM :BH=CK và AH=AK
c)CM:HB cắt AC tại O .CM AO là tia p/g của góc BAC và AO vuông góc với BC
Cho tg ABC cân tại A, có góc A < 90*, kẻ BH vuông góc với AC, CK vuông góc với AC. gọi O là giao điểm của BH và CK.
a, cm tg ABH= tg ACH.
b,tg OBC cân
c, tg OBK=tgOCK
Cho ΔABC vuông cân tại A. Gọi M là trung điểm của B, điểm E nằm giữa M và C. Kẻ BH, CK cùng vuông góc với AE (H và K cùng thuộc đường thẳng AE ). Chứng minh rằng:
a) BH=AK b) ΔMBH=ΔMAK c) ΔMHK là tam giác vuông cân
Cho A B C có AB B = AC , là trung điểm của BC cắt đường thẳng AB tại E. Trên tia đối của tia MA lấy điểm N Sao cho MN =MA Chứng minh rằng
a) AB = NC;AB//NC
b)AM Vuông góc với BC
C)Lấy H thuộc AB và và K thuộc NC sao cho BH=CK. CMR H,M,K thẳng hàng
Cho tam giác ABC có AB < AC. Tia phân giác góc A cắt đường trung trực
của BC tại I. Kẻ IH, IK lần lượt vuông góc với AB, AC (H thuộc AB, K thuộc
AC). Chứng minh: BH = CK.
Mọi người giúp mình với
Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho: BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CE vuông góc với AE tại K. Gọi I là giao điểm của 2 đường thẳng BH và CK. Chứng minh rằng:
a, \(\Delta ABH\)=\(\Delta ACK\)
b, AI là tia phân giác của ∠DAE
c, HK//DE