Cho tam giác ABC có 3 góc nhọn, vẽ đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC.
a) CM nếu HG song song BC thì tanB.tanC=3
b) CM: tanA.tanB.tanC=tanA+tanB+tanC
Cho tam giác ABC có 3 góc nhọn. Vẽ đường cao AD và BE. Gọi H là trực tâm và G là trọng tâm của tam giác ABC.
a/ Chứng minh \(\tan B\times\tan C=\frac{AD}{HD}\)
b/ Chứng tỏ rằng HG // BC \(\Leftrightarrow\tan B\times\tan C=3\)
cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
Cho tam giác ABC có 3 góc nhọn, vẽ đường cao AD và BE, H là trực tâm
a, chứng minh : tanB.tanC=\(\frac{AD}{HD}\)
b, chứng minh : \(DH.DA\le\frac{BC^2}{4}\)
c, Gọi a,b,c lần lượt là độ dài các cạnh BC, CA, AB của tam giác ABC. chúng minh \(\frac{\sin A}{2}\le\frac{a}{2\sqrt{bc}}\)
Cho tam giác ABC nhọn nội tiếp (O;R). Có các đường cao AD,BE,CF, H là trực tâm tam giác ABC. Kẻ đường kính AK.
c) Khi BC và (O) cố định , BC=a. Tìm vị trí của A để P= DE+EF+DF lớn nhất, tìm GTLN theo a và R
cho tam giác ABC nhọn nội tiếp (O;R) , H là trực tâm từ B kẻ đường thẳng // với HC, từ C kẻ đường thẳng // HB, 2 đường thẳng giao nhau tại D
a) CM: tứ giác ABDC nội tiếp , AD là đường kính (O)
b) CM: góc BAH=CAO
c) gọi E là giao BC và HD, G là giao AE,OH. CM: G là trọng tâm tam giác ABC và nếu góc ABC=60 độ tính S của hình quạt tròn COD( cung nhỏ CD)
d) OH//DC CM: tan góc B. tan góc C=3
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi