Cho ΔABC có 3 góc nhọn. Vẽ các đường cao AD, BE, CF cắt nhau tại H. Gọi M đối xứng với H qua BC.
a, C/minh: tứ giác ABMC nội tiếp trong đường tròn (gọi đường tròn đó là (O))
b, C/minh: OA vuông góc với EF
c, Gọi Q là trung điểm AB. C/minh: EQ là tiếp tuyến của đường tròn ngoại tiếp ΔEHC
d, BE cắt đường tròn (O) tại điểm thứ hai là N và CF cắt (O) tại điểm thứ hai là P. Tính GTBT \(T=\frac{AM}{AD}+\frac{BN}{BE}+\frac{CP}{CF}\)