Cho tam giác ABC cân tại A, có BC=2a, M là trung điểm BC, lấy D,E thuộc AB,AC sao cho góc DME bằng góc B
a) chứng minh tích BD.CE không đổi
b)Chứng minh DM là tia phân giác của góc BDE
Cho tam giác ABC can tại A có BC=2a, M là trung điểm của BC. Lấy các điểm D,E thứ tự thuộc cạnh AB, AC sao cho góc DME=góc B. Chứng minh rằng:
a, BD.CE không đổi
b, DM là phân giác góc BDE
c, Tính chu vi tam giác ADE theo a nếu tam giác ABC đều
Cho \(\Delta ABC\) cân tại A có BC = 2a, M là trung điểm BC. Trên AB, AC lấy các điểm D và E sao cho \(\widehat{DME}=\widehat{B}\) .
a, C/minh: Tích BD . CE không đổi
b, C/minh: DM là tia phân giác của \(\widehat{BDE}\)
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD